18 research outputs found

    Carbon dioxide ion dissociations after inner shell excitation and ionization : The origin of site-specific effects

    No full text
    Multi-coincidence experiments with detection of both electrons and ions from decay of core-excited and core-ionized states of CO2 confirm that O-2(+) is formed specifically in Auger decay from the C1s-pi* and O1s-pi* resonances. Molecular rearrangement occurs by bending in the resonant states, and O-2(+) is produced by both single and double Auger decay. It is suggested that electron capture by C+ after partial dissociation in the doubly ionized core of excited CO2+, formed by shake-up in spectator resonant Auger decay, accounts for high kinetic energy and high internal energy in some C + O-2(+) fragments

    Carbon dioxide ion dissociations after inner shell excitation and ionization : The origin of site-specific effects

    No full text
    Multi-coincidence experiments with detection of both electrons and ions from decay of core-excited and core-ionized states of CO2 confirm that O-2(+) is formed specifically in Auger decay from the C1s-pi* and O1s-pi* resonances. Molecular rearrangement occurs by bending in the resonant states, and O-2(+) is produced by both single and double Auger decay. It is suggested that electron capture by C+ after partial dissociation in the doubly ionized core of excited CO2+, formed by shake-up in spectator resonant Auger decay, accounts for high kinetic energy and high internal energy in some C + O-2(+) fragments

    Dissociation of multiply charged ICN by Coulomb explosion

    No full text
    The fragmentations of iodine cyanide ions created with 2 to 8 positive charges by photoionization from inner shells with binding energies from 59 eV (I 4d) to ca. 900 eV (I 3p) have been examined by multi-electron and multi-ion coincidence spectroscopy with velocity map imaging ion capability. The charge distributions produced by hole formation in each shell are characterised and systematic effects of the number of charges and of initial charge localisation are found
    corecore